
1 Intro: basic definitions and Oren-Nayar result

Flux (≈ power, watt) from a point source on area S: Φi = IiΩi (lumen), Ii = luminous intensity of the
source, cd=lm/sr. Assuming S, and solid angles Ω are small: Ωi = S⊥/r

2 = S cos θi/r
2.

Illuminance (lm/m2 = lux) from a point-like source at distance r:

E0 ≡
Ii
r2

=
Φi

S⊥

(1)

Lambertian diffusion, by definition, is when the luminance (cd/m2) of an extended light source (i.e., of
the illuminated surface)

Lr =
Φr

S cos θr · Ωr

is not a function of θr. Total reflected (diffused) flux in such case ΦT
r = LrS

∫

cos θrdΩr = LrSπ. (dΩ =

sin θdθdϕ,
∫ π/2

0
cos θ sin θdθ = 1/2; and there will be no more integrals :) ). Also, ΦT

r = ρΦi, ρ =
reflectance. So

Lr =
ρΦi

πS
=

ρ

π
·
Ii
r2

· cos θi =
ρ

π
E0 cos θi

This result can be found in many physics textbooks.
Real surfaces are not lambertian, but many matte ones can be approximately described with Oren-

Nayar multiplication term (see Eq. 30 in [1])

Lr =
ρ

π
E0 cos θi

{

A+ Bmax[0, cos(ϕi − ϕr)] sin ᾱ tan β̄
}

(2)

A = 1− 0.5
σ2

σ2 + 0.33
, B = 0.45

σ2

σ2 + 0.09
, ᾱ = max(θi, θr), β̄ = min(θi, θr)

σ is “roughness” of the surface, ϕ are azimuthal angles – in surface plane (not shown on figure above). So,
there are two parameters that characterize a matte surface — ρ and σ. σ can be taken from Oren-Nayar
study on their web site. For example, plaster ceiling has σ = 0.4.

The {· · · } term is actually a simplification of a more accurate term given in Eq. 27 in [1] (“more
accurate” – in angular dependence; still 2 parameters, ρ and σ).

The Oren-Nayar result (2) is the key because it allows to calculate E0 if Lr is measured and geometry
angles are known. (whether it gives adequate model for all range of angles, or what are the advancements
on this topic – I didn’t investigate)

2 Calibration and The Two Main Equations

Camera signal is proportional to luminance 1 of the object: V = kLr, here k – some constant depending
on the camera (its settings).

1See for example Peter Hiscocks (EE professor), Measuring Luminance with a Digital Camera,
https://www.ee.ryerson.ca/∼phiscock/astronomy/astronomy.html (type the tilde manually)
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See figure below. Let E0C be illuminance at O1 from some light at L (so that θi = 0), and VC be value
of the pixels in the vicinity of O1 in a photo shot, made with camera at C.

Using (2), they are related as:

VC = kLr = k
ρ

π
E0CA (3)

(A is all what’s left of Oren-Nayar term). Express from here kρ, and substitute it in the measurement of
Lr at any other point on the screen (θi 6= 0):

V = VC
E0

E0C

cos θi

{

· · ·
}

A
, E0 = E0C

V

VC

A
{

A+Bmax[0, cos(ϕi − ϕr)] sinα tan β
}

cos θi
(4)

This last equation is the main one.
If distance from light to that point O1 was Ri, then for the R10m = 10m-sphere (see below), the

illuminance will be (follows from (1)):

E10m = E0

R2

i

R2

10m

(5)

The luminance (candela), if needed, can then be obtained by multiplying by squared distance, i.e. ×100
for the 10m-sphere.

These two simple equations, (4) and (5) is essentially all we need. All “physics” stops here. Really.

Note, this calibration is for the single “package”: the camera (k) + the matte screen (ρ). With another
screen, or another camera – need luxmeter again.

3 Shooting geometry and getting illuminance
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Top of screen is the top of camera frame. lC – distance from camera to screen. In get_LID.m all lengths
are in centimeters, in main_vis.m — in meters. As shown, d1, d3 > 0 (either can be < 0). α, β increase
as shown. ∆ϕ is the difference of r, i-azimuthal angles for Oren-Nayar term. To fully define the whole
geometry we also need (in addition to the 3 distances mentioned) the ratio cm/pixels from a shot of the
screen, scale_cm_px.

Such calculated angles α, β have the meaning of “pitch” and “yaw” correspondingly (no “roll” needed
here) and are very convenient for road illumination calculations. They can also serve as axis on a wall
shot. Another definition is used in automotive, see appropriate section below.

Direct axis x to the right from the center O0, y down. These coordinates x, y of the points on screen
(that linearly map to camera pixels) are stored in matrices XX,YY in the code.

Now straightforward trigonometry and pythagorean theorem give all what’s needed for Oren-Nayar
term – see get_LID.m file. (no equations because they are high-school-trivial). cos∆ϕ can be determined
from scalar product of appropriate vectors. Then use (4) to get illuminance at each point on the screen,
then (5).

To calculate β, we first need to determine the coordinates of the hotspot center (where light intensity
is maximal). Then β is a sum of two angles (sharing the common ray LO1 – light perpendicular). Again,
straightforward trigonometry and pythagorean theorem.

The function get_LID() returns, in matrices of size n1 × n2 (nX=crop_szX/shrink_fact): α-s, β-s
(in radians), and light intensities.

“Wall” visualization in main_vis.m is also straightforward. (except shifting the pattern in α, it’s
non-trivial: see appropriate subsection below).

3.1 HDR and image smoothing

The camera raw images are saved (with raw converter, like ufraw or rawtherapee) to standard 8-bit jpeg
images, with linear value encoding (gamma=1). In get_LID.m these jpegs are first cropped to remove
unnecessary objects. Then several images are combined into single high dynamics range “image” (a matrix
of type double). This resulting image is unnecessary large, so we shrink it, with shrink_fact factor
(hardcoded in get_LID.m to be 10).

The shrinking (in matrix_scale_down.m) is Fourier-based (zeroing large frequencies), so we simulta-
neously get rid of noise.
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